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Introduction
Survival of genotoxic shock is essential to the survival of any organism. The DNA damage checkpoint

(DDC) controls the cellular response to DNA damage (10, 19, 23, 24). Dysfunction of components of the
mammalian DDC, such as ATM, hChk2, p53, and BRCA1, correlates with accelerated tumorigenesis, increased
cancer risk, and tumor chemotherapeutic resistance (2, 8, 11, 18, 20, 21). Eukaryotic DDC mechanisms are
conserved; in Saccharomyces cerevisiae, ATM-family kinase MEC1 is required for the DDC, as are Rad53 and
Rad9 (1, 5, 12, 14, 16, 19, 22, 25, 29, 30, 31). Rad53 is the founding member of a kinase family implicated in
DDCs, including mammalian homolog hChk2 (3, 4, 12, 13, 15, 30). Rad9 shares homology with the BRCA1
C-terminus (32). S. cerevisiae thus provides a powerful genetic system in which to study the conserved DDC
mechanisms.

The Mecl-dependent phosphorylation of Rad53 correlates with the propagation of the DDC signal (17,
26, 27). Mecl is also required for the DDC-dependent phosphorylation of Rad9 (26, 7, 28), leading to the
binding of Rad53 to phospho-Rad9 via the FHA domains of Rad53 (26, 6). The two objectives of this project
are: to define the molecular and catalytic interaction between Mecd, Rad53, and Rad9 that lead to the activation
of Rad53 by the DDC; and to identify and begin characterization of mammalian homologs of RAD53. As I
reported last year, the second objective was completed and published by multiple independent laboratories
within the first year of my project. In the past year, I focused my time on detailed experiments within the later
two tasks of my first objective, namely a detailed analysis of the interaction of Rad53 with Mecl
phosphorylation sites within Rad9.

Progress on Obiective 1: Characterization of physical and catalytic interactions of Mecl
Task 3: characterization ofphysical interactions between Mecl, Rad53, and Rad9

To characterize the formation of a complex including Mecl, Rad53, and Rad9, I sought to identify by
immunoprecipitation a complex containing Mecd and Rad9 or Rad53. Despite repeated attempts by myself and
other members of the laboratory, we have been unable to coimmunoprecipitate such a complex. Genetic and
biochemical data, however, indicates that Rad9 is likely a direct substrate of Mecl in vivo, and, as I reported
from my studies last year, Mecl phosphorylates an ATM-family consensus [S/T]Q site within Rad9 in vitro.
To expand our understanding of the Rad53-Rad9 interaction first discovered in our laboratory, I studied the
possibility that the putative Mecd phosphorylation [S/T]Q sites within Rad9 are bona fide DNA damage-
induced phosphorylation sites that serve as Rad53 FHA domain docking sites in vivo. This is especially exiting
as, though the FHA domain is a novel phosphorylation-dependent protein binding domain with several literature
reports of in vitro binding specificities, not one in vivo FHA domain binding site has yet been described.

As I reported last year, mutagenesis of [S/T]Q sites within Rad9 determined that a [S/T]Q cluster
domain (SCD) within Rad9 is required for the DDC-induced Rad9 phosphorylation and interaction of Rad9
with Rad53. The Rad9 SCD contains a total of six [S/T]Q sites. To determine if a single site has a dominant
contribution to Rad9 phosphorylation and interaction with Rad53, I tested a series of rad9 mutants containing
single alanine substitutions of individual SCD sites. Mutation of single [S/T]Q sites within the SCD had little
apparent effect on the DNA damage induced phosphorylation of Rad9, immunoprecipitation of Rad9 with
Rad53, or Rad53 phosphorylation (Figure 1). Since simultaneous substitution of all six sites does inactivate
these functions, these data suggest that there are multiple phosphorylation sites within this group, and that
Rad53 interacts redundantly with some or all of these sites.

To characterize the ability of a single Rad9 SCD site to support the interaction of Rad9 with Rad53, I
examined the rescue of Rad9 and Rad53 DNA damage checkpoint regulation after restoration of single [S/T]Q
residues into an otherwise mutant SCD. Reintroduction of a wildtype residue at Rad9 S435 best restored the
DNA damage-induced slower mobility forms of Rad9 (Figure 2). However, reintroduction of Rad9 S435 only
modestly rescued the DNA damage-induced Rad9 coimmunoprecipitation with Rad53, and the phosphorylation
of Rad53 (Figure 2). By contrast, reintroduction of Rad9 T390 moderately restored the DNA damage-induced
slower mobility forms of both Rad9 and Rad53 (Figure 2). However, even this add-back mutant only partially
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rescued coimmunoprecipitation of Rad9 with Rad53, and no single Rad9 cluster add-back allele fully restored
the checkpoint-induced phosphorylation or coimmunoprecipitation of Rad9 and Rad53 (Figure 2). These data
indicate that the Rad9 [S/T]Q cluster sites may act in an additive or cooperative manner to recruit Rad53.
Moreover, these results extend the absolute correlation between the ability of Rad9 to coimmunoprecipitate
with Rad53 and the damage-regulated phosphorylation of Rad53, supporting the model that Rad9 functions as
an adaptor for the DDC signaling pathway.

I also explored the impact of Rad9 SCD mutations on the function of the G2/M arrest induced by the
DDC (9). My analysis of the G2/M DDC in wildtype, rad96xA, rad9A, and rad53 FHA 2-NVs demonstrated that
rad96xA has defects similar to those of the rad53 cells (Figure 3). Consistent with the ability of the T390 add-
back mutant to significantly recover the DNA damage-induced interaction of Rad9 with Rad53, reintroduction
of Rad9 T390 to rad96xA also partially recovered the RAD53-dependent G2/M arrest (Figure 3). However, this
rescue was weak, suggesting that the regulation of Rad53 via an intact Rad9 SCD is required for the full action
of the RAD53-dependent G2/M DNA damage checkpoint arrest. Readdition of S435 to the rad96xA mutant only
weakly recovering the coimmunoprecipitation of Rad9 with Rad53, was less able to recover the G2/M arrest
(Figure 3).

Survival of genotoxic stress requires the activity of the DNA checkpoint pathways, as well as the DNA
repair systems. An understanding of this process is essential for the efficacious use of chemo- and radiotherapy.
In S. cerevisiae, loss of RAD9 impairs both the DNA damage checkpoint pathway and DNA repair, and
significantly decreases the viability of cells challenged with DNA damage. Mutation of the Rad9 SCD
(rad96xA) causes a very slight reduction in survival of DNA damage, which, like the RAD9-dependent
phosphorylation of Rad53 in this mutant, is largely recovered by the restoration of a wildtype residue at T390
(Figure 4A). The additional mutation of another [S/T]Q site at T603 (rad97xA) cells causes a greater loss of
viability (Figure 4A).

Tofil was identified in a yeast two-hybrid screen with DNA topoisomerase I, and is required for the
activation of Rad53 by the RAD9-independent DNA replication checkpoint pathway (33, 34). Inhibition of
replication with hydroxyurea (HU) in DNA replication checkpoint mutants, such as toflA, is thought to cause
replication forks collapse, causing DNA damage (35, 36). Indeed, the deletion of TOF1 causes HU-induced
Rad53 phosphorylation to be RAD9-dependent (34). Therefore, I determined whether the rad97xA mutation
decreases the HU survival of a toflA mutant. Wildtype, toflA, and rad97xA strains are similarly viable when
grown on HU-containing media, whereas the toflA rad97xA double mutant is very sensitive to growth on HU
(Figure 4B). The toflA rad53A mutant is more sensitive to HU than the toflA rad97xA mutant (Figure 5B),
suggesting that even if Rad53 activation is compromised, Rad53 still contributes to the survival of DNA
damage. Notably, a rad53A background uncovers a more significant loss of HU survival upon TOF1 deletion
than normally observed in a wildtype background (Figure 4B).

In addition to interacting with and thereby regulating the phosphorylation of Rad53, Rad9 also regulates
the phosphorylation of another DDC component, Chkl. I am currently examining whether Rad9 SCD mutants
that are defective for Rad53 regulation are similarly impaired for Chkl regulation. I am also developing a
method to purify in vivo phosphorylated Rad9 from yeast cell lysates, in order to directly identify Rad9
phosphorylation sites by mass spectroscopy.

Task 4: in vitro reconstruction of the Rad53-Rad9 interaction
One of the outstanding questions about the Rad53-Rad9 interaction is whether the interaction is direct,

or via another polypeptide or other intermediary. To distinguish these possibilities, I sought to demonstrate
Rad53 binding to Rad9 in vitro using components generated independent of S. cerevisiae. The ability of
Rad96 xA+z 39 ° to enable a significant proportion of the Rad9 interaction with Rad53 implies that T390 is a major
functional site for Rad53 binding in vivo. To determine if Rad53 binds directly to Rad9 T390 in a
phosphorylation-dependent manner, I measured the increase of surface plasmon resonance caused by binding of
soluble, bacterially produced Rad53 FHA domains to synthetic Rad9 T390 peptides immobilized on a BlAcore
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sensor chip. Rad53 FHA1 specifically interacted with the phosphorylated Rad9 T390 peptide (P-T390), and
mutation of two conserved FHA domain residues abolished this binding (Figure 5). Similar to FHA1, GST-
Rad53 FHA2 preferentially bound the phosphorylated Rad9 T390 peptide, demonstrating an affinity lost upon
mutation of conserved FHA2 residues (Figure 5). On average, Rad53 FHAl bound the phosphorylated Rad9
T390 peptide with a KD of 2.5 jtM (s=0.3, n=6), and GST-Rad53 FHA2 bound with a KD of 1.4 [tM (s=0.3,
n=3), though the observed affinity of GST-FHA2 may have been artificially increased due to the ability of GST
to homodimerize. Taken together, these results show that the Rad53 FHA domains can directly and specifically
bind Rad9 peptides phosphorylated at ATM-family consensus [S/T]Q phosphorylation sites.

Key Research Accomplishments
"* Characterized the contribution of the Rad9 SCD to

"* Rad9 phosphorylation
"* Interaction of Rad9 with Rad53
"* Rad53 phosphorylation
"* Function of the G2/M DNA damage checkpoint arrest
"* Survival of genotoxic stress

"* Demonstrated in vitro the direct binding of Rad53 FHA domains to a phosphorylated Rad9 SCD peptide

Reportable Outcomes
1. Manuscripts, abstracts, and presentations
2. Patents and licenses applied for and/or issued
3. Degrees obtained
4. Development of cell lines, tissue or serum repositories
5. Informatics
6. Funding applied for
7. Employment or research opportunities applied for

Summary
Significant progress has been made in meeting the goals of the first objective of this proposal. I

identified a cluster of putative Mec 1 phosphorylation sites within Rad9 that are required for the phosphorylation
of Rad9, the interaction of Rad53 with Rad9, and the survival of genotoxic stress. I determined the contribution
of individual sites within this cluster to the function of Rad9 in regulating Rad53 and the G2/M DNA damage
checkpoint. I demonstrated that both Rad53 FHA domains bind a Rad9 SCD site in vitro when phosphorylated.
I am exploring whether the Rad9 SCD contributes to Rad9 activities other than regulation of Rad53, and am
seeking direct biochemical evidence that sites within the Rad9 SCD are phosphorylated in response to DNA
damage. I am preparing a manuscript describing these results, and will be submitting it to a leading journal
shortly.
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Figure 1: Mutagenesis of the Rad9 SCD: 1. Single site mutations. Wildtype Rad9 (wt), an all-alanine SCD mutant (6xA), and

single alanine substitutions of SCD sites were immunoprecipitated anti-Rad9 (top) or anti-Rad53 (middle) and blotted anti-HA (top

and middle). Corrsponding lysates (50[tg) were blotted anti-Rad53 (bottom).
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Figure 2: Mutagenesis of the Rad9 SCD: 2. Single wildtype sites in a multiple-alanine mutant SCD. Wildtype Rad9 (wt), all-
alanine SCD mutants (6xA and 7xA), and multiple alaninec SCD mutants with a single wildtype residue at the indicated site were
immunoprecipitated anti-Rad9 (top) or anti-Rad53 (middle) and blotted with anti-HA (top and middle). Corresponding lysates (5O0ig)
were blotted anti-Rad53 (bottom).
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Figure 3: Mutation of the Rad9 SCD impairs the DNA damage checkpoint arrest at G2IM. The ability of Rad9 SCD mutations
to arrest as pre-anaphase cells at the G 2 /M checkpoint arrest in response to DNA damage was compared to the known mutations in the
DDC.
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Figure 4: Rad9 SCD mutations impair the survival of DNA damage. Mutation of [SITIQ sutes within Rad9 reduce the
viability of cells exposed to UV irradiation (top) and toflA cells exposed to HU (bottom).

Analyte: Rad53 FHA1 Rad53 FHA1 Rad53 FHA1R7OA N107A

Ligand: Rad9 T390 peptide Rad9 P-T390 peptide Rad9 P-T390 peptide
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Analyte: GST-Rad53 FHA2 GST-Rad53 FHA2 GST-Rad53 FHA2NVS0655657AA
Ligand: Rad9 T390 peptide Rad9 P-T390 peptide Rad9 P-T390 peptide
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Figure 5: Surface plasmon resonance measurements of Rad53 FHA domains binding a Rad9 SCD peptide. Bacterially
produced Rad53 FHA domain fusion proteins were flowed over the surface of a BlAcore sensor chip coated with the indicated Rad9
SCD site T390 peptide. Binding of the fusion proteins to the surface of the sensor chip is indicated by an increase of the surface
plasmon resonance.

11



DEPARTMENT OF THE ARMY
_'S Aý ' MEV DCA_ A\O A,!SEERA CCE

- N, -rq'> • -,250

STTENTiON OF

MCMR-RMI-S (70-1y) 28 July 03

MEMORANDUM FOR Administrator, Defense Technical Information
Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir,
VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has
reexamined the need for the limitation assigned to technical
reports written for this Command. Request the limited
distribution statement for the enclosed accession numbers be
changed to "Approved for public release; distribution unlimited."
These reports should be released to the National Technical
Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at
DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

"N\ r 4"

Encl PHYL M. RINEHART
Deputy Chief of Staff for

Information Management
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